

Homework 3

Q1- Variable Elimination

Consider the following Bayesian network.

- A) Draw the corresponding Markov network.
- B) Now, apply the following variable elimination orders and draw the corresponding induced graph.
 - 1) Y_1 , X_1 , Y_2 , X_2 , ..., Y_n , X_n 2) X_1 , Y_1 , X_2 , Y_2 , ..., X_n , Y_n
- C) Given that X_is and Y_is are binary variables, which of the above variable elimination orders is optimal?

Q2- Junction tree

Consider the following junction tree for performing **max-sum message passing** on a Markov Random Field network.

A) Draw a Markov network corresponding to this junction tree.

B) Assume that all variables are binary and the potentials of clusters are as below. $\phi_1(A, B) = exp(\alpha 1(A = B = 1)),$ $\phi_2(B, C, D) = exp(2B + \gamma C + \lambda D),$

$$\begin{split} \varphi_{3}^{-}(D,G) &= exp(2D + \lambda G), \\ \varphi_{4}^{-}(C,F) &= exp(1(C = F)), \\ \varphi_{5}^{-}(C,D,H) &= exp(1(C = D) + DH), \\ \varphi_{6}^{-}(C,J) &= exp(\zeta CJ), \\ \varphi_{7}^{-}(D,H,I) &= exp(1(D = H = 1) + 1(H! = I)) \\ \end{split}$$
where 1(.) is an indicator function.

Find the values of α , γ , λ and ζ . (Compute all necessary messages for finding these variables.)